Brown rice is composed of rice bran, pericarp, seed coat, and aleurone layers, and the rice bran layer contains a large number of substances useful for the human body, such as dietary fiber, α-tocopherol, α-tocotrienol, and vitamins. However, more than 90% of these substances are removed when polished, and white rice has the disadvantage of losing food-related ingredients, such as umami-related amino acids, when compared to the unpolished group. In this study, we tried to develop new breeding lines with a thinner seed coat and aleurone layer to provide high eating quality with softer chewing characteristics and processability in rice grain. We detected an SNP for foreground selection for the backcross population by comparing genome sequences between Samgwang and Seolgaeng and developed high eating quality brown rice breeding lines by applying marker-assisted backcrossing (MABC) breeding programs to backcross populations between Samgwang and Seolgaeng using KASP markers. SNP markers for foreground selection were identified to improve eating and processability through SNP mapping of Samgwang and Seolgaeng with SSIIa as a target gene in this study. Line selection according to genotype of KASP markers was successful in BC1F1 and BC2F1 generations, with the recurrent parent genome recovery ratio ranging from 91.22% to 98.65%. In BC2F1 seeds of the selected lines, thickness of the aleurone layer was found to range from 13.82 to 21.67 μm, which is much thinner than the 30.91 μm of the wild type, suggesting that selection by MABc could be used as an additional breeding material for the development of highly processed rice varieties. These lines will be useful to develop new brown rice varieties with softer chewing characteristics and processability in rice grain.