2023
DOI: 10.5194/gi-2022-24
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Sample labeling and classification method of hyperspectral remote sensing images based on texture features and semi-supervised learning

Abstract: Abstract. Hyperspectral images contain abundant spectral and spatial information about the earth's surface, labeling data processing and analysis more difficult, as well as the problem of sample labeling. In this paper, local binary pattern (LBP), sparse representation and mixed logistic regression model are introduced, and a sample labeling method based on neighborhood information and priority classifier discrimination is presented. Then, a hyperspectral remote sensing image classification method based on tex… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?