This investigation tested the hypothesis that the native cyanobacteria can acclimatize and grow under the combination of environmental factors and/or how does their process change with the age of culture? Here, we tried to combine multiple factors to simulated what happens in natural ecosystems. We analyzed the physiological response of terrestrial cyanobacterium, Cylindrospermum sp. FS 64 under combination effect of different salinity (17, 80, and 160 mM) and alkaline pHs (9 and 11) at extremely limited carbon dioxide concentration (no aeration) up to 96 h. Our evidence showed that growth, biomass, photosystem II, and phycobilisome activity significantly increased under 80 mM salinity and pH 11. In addition, this combined condition led to a significant increase in maximum light-saturated photosynthesis activity and photosynthetic efficiency. While phycobilisomes and photosystem activity decreased by increasing salinity (160 mM) which caused decreased growth rates after 96 h. The single-cell study (CLMS microscopy) which illustrated the physiological state of the individual and active-cell confirmed the efficiency and effectiveness of both photosystems and phycobilisome under the combined effect of 80 mM salinity and pH 11.