Sampling locally, hypothesis globally: accurate 3D point cloud registration with a RANSAC variant
Yuxin Cheng,
Zhiqiang Huang,
Siwen Quan
et al.
Abstract:Correspondence-based six-degree-of-freedom (6-DoF) pose estimation remains a mainstream solution for 3D point cloud registration. However, the heavy outliers pose great challenges to this problem. In this paper, we propose a random sample consensus (RANSAC) variant based on sampling locally and hypothesis globally (SLHG) for 6-DoF pose estimation and 3D point cloud registration. The key novelties are efficient sampling by guiding the sampling process locally and accurate pose estimation by generating hypothese… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.