During the diagenesis of rocks in a sedimentary basin, an intrusion of CO 2 could cause dissolution or/and precipitation of the surrounding rocks. As a result, the reservoir quality may be altered. The mineral composition and heterogeneity have pronounced impacts on the geochemical reaction and reservoir quality evolution. A numerical simulation method is employed to investigate the influences of primary mineral on the diagenesis. Based on the measured data from the Songliao Basin, a total of 26 two-dimensional models with different mineral composition are set up. To mimic the regionally heterogeneous distribution of mineral composition, the Monte Carlo method is employed. A CO 2 gas reservoir of magma intrusion origin, located in the Songliao Basin, northeastern China, is selected for the present study. The reservoir is an ideal site for investigating the impact of mineral heterogeneity on diagenesis after the CO 2 intrusion. In this reservoir, with the presence of high-pressure CO 2 , the mineral heterogeneity causes significant dissolution and precipitation of minerals, which decreases the reservoir porosity and degrades the reservoir quality. The geochemical reactions caused by different mineral composition vary widely. The mineral heterogeneity causes similar distributions of the geochemical reactions and reservoir quality evolution. Dominant secondary minerals are dawsonite in the early diagenesis and ankerite in the late stage. The diagenetic sequences modeled by our numerical simulations reproduce the petrographic and geochemical data well.