Sand and fines production in oil and gas wells are a major challenge that can result in production system failures. In unconsolidated sand reservoirs, proper sand-control practices are necessary to help prevent reservoir sand production. To remove formation damage and control fines migration, acid treatments are pumped ahead of sand-control treatments, which can be challenging because variations in mineralogy determine fluid performance and require a customized fluid selection. For this case, improvements in cased hole sand-control completions were initially sought by switching to high-rate water pack (HRWP) or fracture for placement of gravel (FPG) techniques; however, obtaining fracture conductivity and minimizing out-of-zone fracture growth was challenging. To accomplish the latter, fluid selection was optimized with linear-gel systems and relative permeability modifiers as prepad systems. Operators should know the formation's composition at the treatment point for a successful acidizing treatment to be performed. The dominant mineral component and temperature of the target formation determines the most effective preflush, hydrofluoric (HF)/hydrochloric (HCl) acid treatment blend, and preflush/treatment volume.
The successful implementation of HRWP and FPG techniques produced excellent results with regards to skin minimization and production maximization. The HRWP technique was applied when gas/water contact was nearby, allowing flow from a moderate to high payzone kh (permeability × net pay), and FPG was used to produce a proper flow in low kh formations.
The goal of sandstone-matrix acidizing is to remove siliceous microparticles blocking or bridging pore throats by injecting acid formulations containing HF acid. The presence of potassium feldspars, sodium feldspars, illite, and zeolites is a concern because these compounds can form or contribute to forming significant matrix-blocking precipitates, such as sodium or potassium fluosilicates and aluminum fluorides, during HF/HCl treatments. Variations in mineralogy determine fluid performance and make customized fluid selection necessary. The goal is to minimize the risk of over acidizing the near-wellbore region and to extend the reaction for deeper penetration when possible. In some cases, the acid systems with the equivalent strength of up to 1.5% HF acid were used.
This paper describes the planning process, acid treatment selection based on laboratory testing, placement and diversion techniques, sand-control completions selection, operation summary, and evaluation of treatment success.