Anodes involving conversion and alloying reaction mechanisms are attractive for potassium‐ion batteries (PIBs) due to their high theoretical capacities. However, serious volume change and metal aggregation upon potassiation/depotassiation usually cause poor electrochemical performance. Herein, few‐layered SnS2 nanosheets supported on reduced graphene oxide (SnS2@rGO) are fabricated and investigated as anode material for PIBs, showing high specific capacity (448 mAh g−1 at 0.05 A g−1), high rate capability (247 mAh g−1 at 1 A g−1), and improved cycle performance (73% capacity retention after 300 cycles). In this composite electrode, SnS2 nanosheets undergo sequential conversion (SnS2 to Sn) and alloying (Sn to K4Sn23, KSn) reactions during potassiation/depotassiation, giving rise to a high specific capacity. Meanwhile, the hybrid ultrathin nanosheets enable fast K storage kinetics and excellent structure integrity because of fast electron/ionic transportation, surface capacitive‐dominated charge storage mechanism, and effective accommodation for volume variation. This work demonstrates that K storage performance of alloy and conversion‐based anodes can be remarkably promoted by subtle structure engineering.