Purpose
Sentiment analysis has observed a nascent interest over the past decade in the field of social media analytics. With major advances in the volume, rationality and veracity of social networking data, the misunderstanding, uncertainty and inaccuracy within the data have multiplied. In the textual data, the location of sarcasm is a challenging task. It is a different way of expressing sentiments, in which people write or says something different than what they actually intended to. So, the researchers are showing interest to develop various techniques for the detection of sarcasm in the texts to boost the performance of sentiment analysis. This paper aims to overview the sentiment analysis, sarcasm and related work for sarcasm detection. Further, this paper provides training to health-care professionals to make the decision on the patient’s sentiments.
Design/methodology/approach
This paper has compared the performance of five different classifiers – support vector machine, naïve Bayes classifier, decision tree classifier, AdaBoost classifier and K-nearest neighbour on the Twitter data set.
Findings
This paper has observed that naïve Bayes has performed the best having the highest accuracy of 61.18%, and decision tree performed the worst with an accuracy of 54.27%. Accuracy of AdaBoost, K-nearest neighbour and support vector machine measured were 56.13%, 54.81% and 59.55%, respectively.
Originality/value
This research work is original.