Mesenchymal Stem Cells (MSCs) are a heterogeneous population of fibroblast-like cells which maintain self-renewability and pluripotency to differentiate into mesodermal cell lineages. The use of MSCs in clinical settings began with high enthusiasm and the number of MSC-based clinical trials has been rising ever since. However; the very unique characteristics of MSCs that made them suitable to for therapeutic use, might give rise to unwanted outcomes, including tumor formation and progression. In this paper, we present a model of carcinogenesis initiated by MSCs, which chains together the tissue organization field theory, the stem cell theory, and the inflammation-cancer chain. We believe that some tissue resident stem cells could be leaked cells from bone marrow MSC pool to various injured tissue, which consequently transform and integrate in the host tissue. If the injury persists or chronic inflammation develops, as a consequence of recurring exposure to growth factors, cytokines, etc. the newly formed tissue from MSCs, which still has conserved their mesenchymal and stemness features, go through rapid population expansion, and nullify their tumor suppressor genes, and hence give rise to neoplastic cell (carcinomas, sarcomas, and carcino-sarcomas). Considering the probability of this hypothesis being true, the clinical and therapeutic use of MSCs should be with caution, and the recipients' long term follow-up seems to be insightful.