Despite mounting evidence that the mammalian retina is exceptionally reliant on proper NAD+ homeostasis for health and function, the specific roles of subcellular NAD+ pools in retinal development, maintenance, and disease remain obscure. Here, we show that deletion of the nuclear-localized NAD+ synthase nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1) in the developing murine retina causes early and severe degeneration of photoreceptors and select inner retinal neurons via multiple distinct cell death pathways. This severe phenotype is associated with extra-nuclear metabolic disruptions to retinal central carbon metabolism, purine nucleotide synthesis, and amino acid pathways. Furthermore, large-scale transcriptomics reveals dysregulation of a collection of photoreceptor and synapse-specific genes in NMNAT1 knockout retinas prior to detectable morphological or metabolic alterations. Collectively, our study furthers understanding of subcellular NAD+ metabolism in vision, reveals previously unrecognized complexity in NMNAT1-associated retinal degeneration, and suggests a yet-undescribed role for NMNAT1 in genetic regulation of photoreceptor terminal differentiation.