Background
Rapid antigen (RA) tests are being increasingly employed to detect SARS-CoV-2 infections in quarantine and surveillance. Prior research has focused on RT-PCR testing, a single RA test, or generic diagnostic characteristics of RA tests in assessing testing strategies.
Methods
We have conducted a comparative analysis of the post-quarantine transmission, the effective reproduction number during serial testing, and the false-positive rates for 18 RA tests with emergency use authorization from The United States Food and Drug Administration and an RT-PCR test. To quantify the extent of transmission, we developed an analytical mathematical framework informed by COVID-19 infectiousness, test specificity, and temporal diagnostic sensitivity data.
Results
We demonstrate that the relative effectiveness of RA tests and RT-PCR testing in reducing post-quarantine transmission depends on the quarantine duration and the turnaround time of testing results. For quarantines of two days or shorter, conducting a RA test on exit from quarantine reduces onward transmission more than a single RT-PCR test (with a 24-h delay) conducted upon exit. Applied to a complementary approach of performing serial testing at a specified frequency paired with isolation of positives, we have shown that RA tests outperform RT-PCR with a 24-h delay. The results from our modeling framework are consistent with quarantine and serial testing data collected from a remote industry setting.
Conclusions
These RA test-specific results are an important component of the tool set for policy decision-making, and demonstrate that judicious selection of an appropriate RA test can supply a viable alternative to RT-PCR in efforts to control the spread of disease.