Grasslands cover one third of the earth’s terrestrial surface and are mainly used for livestock production. The usage type, use intensity and condition of grasslands are often unclear. Remote sensing enables the analysis of grassland production and management on large spatial scales and with high temporal resolution. Despite growing numbers of studies in the field, remote sensing applications in grassland biomes are underrepresented in literature and less streamlined compared to other vegetation types. By reviewing articles within research on satellite-based remote sensing of grassland production traits and management, we describe and evaluate methods and results and reveal spatial and temporal patterns of existing work. In addition, we highlight research gaps and suggest research opportunities. The focus is on managed grasslands and pastures and special emphasize is given to the assessment of studies on grazing intensity and mowing detection based on earth observation data. Grazing and mowing highly influence the production and ecology of grassland and are major grassland management types. In total, 253 research articles were reviewed. The majority of these studies focused on grassland production traits and only 80 articles were about grassland management and use intensity. While the remote sensing-based analysis of grassland production heavily relied on empirical relationships between ground-truth and satellite data or radiation transfer models, the used methods to detect and investigate grassland management differed. In addition, this review identified that studies on grassland production traits with satellite data often lacked including spatial management information into the analyses. Studies focusing on grassland management and use intensity mostly investigated rather small study areas with homogeneous intensity levels among the grassland parcels. Combining grassland production estimations with management information, while accounting for the variability among grasslands, is recommended to facilitate the development of large-scale continuous monitoring and remote sensing grassland products, which have been rare thus far.