Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Real-time spaceborne bistatic SAR imaging could significantly reduce the whole processing time and can enhance the spaceborne SAR mission availability. Onboard real-time SAR imaging relies on the Doppler parameters estimated from the real-time onboard orbit determination system (OODS) measurement, whose accuracy level is not comparable to the orbit ephemeris data in ground-based SAR processing. The investigation of the impact of error in real-time OODS measurements on bistatic SAR image quality is necessary, and it can help to clarify the key parameter limits of the real-time OODS. The monostatic analytical approximation model (MonoAAM) for spaceborne SAR reduces simulation complexity and processing time compared to the widely used numerical simulation method. However, due to the different configurations between spaceborne bistatic and monostatic SAR, simply applying the MonoAAM on spaceborne bistatic SAR cannot guarantee the desired result. A bistatic analytical approximation model (BiAAM) for Doppler rate estimation error from real-time OODS measurement in real-time spaceborne bistatic SAR imaging is proposed for characterizing the estimation error. Selecting quadratic phase error (QPE) as an evaluation variable, the proposed BiAAM model can provide QPE estimation results for each position of the satellite in its orbit and the maximum QPE estimation for the whole orbit, while revealing the different process of OODS measurement error transferring to QPE in spaceborne bistatic SAR. The correctness and reliability of BiAAM are evaluated by comparing the result with a Monte Carlo numerical simulation method. With the supporting result from BiAAM, the concept and early-stage development of a real-time onboard bistatic SAR imaging mission could be possibly benefited.
Real-time spaceborne bistatic SAR imaging could significantly reduce the whole processing time and can enhance the spaceborne SAR mission availability. Onboard real-time SAR imaging relies on the Doppler parameters estimated from the real-time onboard orbit determination system (OODS) measurement, whose accuracy level is not comparable to the orbit ephemeris data in ground-based SAR processing. The investigation of the impact of error in real-time OODS measurements on bistatic SAR image quality is necessary, and it can help to clarify the key parameter limits of the real-time OODS. The monostatic analytical approximation model (MonoAAM) for spaceborne SAR reduces simulation complexity and processing time compared to the widely used numerical simulation method. However, due to the different configurations between spaceborne bistatic and monostatic SAR, simply applying the MonoAAM on spaceborne bistatic SAR cannot guarantee the desired result. A bistatic analytical approximation model (BiAAM) for Doppler rate estimation error from real-time OODS measurement in real-time spaceborne bistatic SAR imaging is proposed for characterizing the estimation error. Selecting quadratic phase error (QPE) as an evaluation variable, the proposed BiAAM model can provide QPE estimation results for each position of the satellite in its orbit and the maximum QPE estimation for the whole orbit, while revealing the different process of OODS measurement error transferring to QPE in spaceborne bistatic SAR. The correctness and reliability of BiAAM are evaluated by comparing the result with a Monte Carlo numerical simulation method. With the supporting result from BiAAM, the concept and early-stage development of a real-time onboard bistatic SAR imaging mission could be possibly benefited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.