This paper addresses the problem of verifying discrete-time stochastic systems against omega-regular specifications using finite-state abstractions. Omegaregular properties allow specifying complex behavior and encompass, for example, linear temporal logic. We focus on a class of systems with mixed monotone dynamics. This class has been show to be amenable to efficient reachable set computation and models a wide-range of physically relevant systems. In general, finite-state abstractions of continuous state stochastic systems give rise to augmented Markov Chains wherein the probabilities of transition between states are restricted to an interval. We present a procedure to compute a finite-state Interval-valued Markov Chain abstraction of discrete-time, mixed-monotone stochastic systems subject to affine disturbances given a rectangular partition of the state-space. Then, we suggest an algorithm for performing verification against omega-regular properties in IMCs. Specifically, we aim to compute bounds on the probability of satisfying a specification from any initial state in the IMC. This is achieved by solving a reachability problem on sets of socalled winning and losing components in the Cartesian product between the IMC and a Rabin automaton representing the specification. Next, the verification of IMCs may yield a set of states whose acceptance status is undecided with respect to the specification, requiring a refinement of the abstraction. We describe a specification-guided approach that compares the best and worst-case behaviors of accepting paths in the IMC and targets the appropriate states accordingly. Finally, we show a case study.