Intensity saturation tends to induce severe errors in high dynamic range three-dimensional measurements using structured-light techniques. This paper presents an enhanced Fourier-Hilbert-transform (EFHT) method to suppress the saturation-induced phase error in phase-shifting profilometry, by considering three types of residual errors: nonuniform-reflectivity error, phase-shift error, and fringe-edge error. Background normalization is first applied to the saturated fringe patterns to suppress the effect of the nonuniform reflectivity. A self-correction method is proposed to correct the large phase-shift error in the compensated phase. The self-corrected phase error is detected to assist in locating the fringe-edge area, within which the true phase is computed based on the sub-period phase error model. Experimental results demonstrated the effectiveness of the proposed method in suppressing the saturation-induced phase error and other three types of residual errors with fewer images.