Collagen is the main structural and most abundant protein in the human body, and it is routinely extracted and analysed in scientific archaeology. Its degree of preservation is, therefore, crucial and several approaches are used to determine it. Spectroscopic techniques provide a cost-effective, non-destructive method to investigate the molecular structure, especially when combined with multivariate statistics (chemometric approach). In this study, we used FTIR-ATR spectroscopy to characterise collagen extracted from skeletons recovered from necropoleis in NW Spain spanning from the Bronze Age to eighteenth century AD. Principal components analysis was performed on a selection of bands and structural equation models (SEM) were developed to relate the collagen quality indicators to collagen structural change. Four principal components represented: (i) Cp1, transformations of the backbone protein with a residual increase in proteoglycans; (ii) Cp2, protein transformations not accompanied by changes in proteoglycans abundance; (iii) Cp3, variations in aliphatic side chains and (iv) Cp4, absorption of the OH of carbohydrates and amide. Highly explanatory SEM models were obtained for the traditional collagen quality indicators (collagen yield, C, N, C:N), but no relationship was found between quality and δ13C and δ15N ratios. The observed decrease in C and N content and increase in C:N ratios is controlled by the degradation of protein backbone components and the relative preservation of carbon-rich compounds, proteoglycans and, to a lesser extent, aliphatic moieties. Our results suggest that FTIR-ATR is an ideal technique for collagen characterization/pre-screening for palaeodiet, mobility and radiocarbon research.