Porphyrins are prominent host molecules which are widely used due to their structural characteristics and directional interaction sites. This review summarizes non-covalently bound ternary complexes of porphyrins, constructed from at least three non-identical species. Progress in supramolecular chemistry allows the creation of complex molecular machinery tools, such as rotors, motors and switches from relatively simple structures in a single self-assembly step. In the current review, we highlight the collection of sophisticated molecular ensembles including sandwich-type complexes, cages, capsules, tweezers, rotaxanes, and supramolecular architectures mediating oxygen-binding and oxidation reactions. These diverse structures have high potential to be applied in sensing, production of new smart materials as well as in medical science.