30The systematic identification of genetic events driving cellular transformation and tumor progression in the absence 31 of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell 32 carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular 33 landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically 34 define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified 35 established tumor suppressor genes, as well as previously unknown oncogenic drivers of cuSCC. Functional analysis 36 confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the 37 initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely 38 heterogeneous genetic landscape of cuSCC initiation and progression, which could be harnessed to better 39 understand skin oncogenic etiology and prioritize therapeutic candidates. 40