2023
DOI: 10.1371/journal.pone.0281315
|View full text |Cite
|
Sign up to set email alerts
|

scAEGAN: Unification of single-cell genomics data by adversarial learning of latent space correspondences

Abstract: Recent progress in Single-Cell Genomics has produced different library protocols and techniques for molecular profiling. We formulate a unifying, data-driven, integrative, and predictive methodology for different libraries, samples, and paired-unpaired data modalities. Our design of scAEGAN includes an autoencoder (AE) network integrated with adversarial learning by a cycleGAN (cGAN) network. The AE learns a low-dimensional embedding of each condition, whereas the cGAN learns a non-linear mapping between the A… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 33 publications
0
0
0
Order By: Relevance