Translation initiation factors eIF4A and eIF4G form, together with the cap-binding factor eIF4E, the eIF4F complex, which is crucial for recruiting the small ribosomal subunit to the mRNA 5 end and for subsequent scanning and searching for the start codon. eIF4A is an ATP-dependent RNA helicase whose activity is stimulated by binding to eIF4G. We report here the structure of the complex formed by yeast eIF4G's middle domain and full-length eIF4A at 2.6-Å resolution. eIF4A shows an extended conformation where eIF4G holds its crucial DEAD-box sequence motifs in a productive conformation, thus explaining the stimulation of eIF4A's activity. A hitherto undescribed interaction involves the amino acid Trp-579 of eIF4G. Mutation to alanine results in decreased binding to eIF4A and a temperature-sensitive phenotype of yeast cells that carry a Trp579Ala mutation as its sole source for eIF4G. Conformational changes between eIF4A's closed and open state provide a model for its RNA-helicase activity.translation initiation ͉ DEAD-box protein ͉ X-ray structure ͉ eIF4F T ranslation initiation in eukarya is usually the rate-limiting and most tightly controlled stage of polypeptide synthesis (reviewed in refs. 1-3). For the majority of eukaryotic mRNAs, the cap-dependent pathway is used for translation initiation (3). It comprises four consecutive steps: (i) formation of the 43S preinitiation complex consisting of the 40S ribosomal subunit, initiation factors (eIF2, eIF3), and Met-tRNA i ; (ii) recruitment of the 43S preinitiation complex to the capped 5Ј end of the mRNA; (iii) scanning of the 5Ј untranslated region of the mRNA and start codon recognition; and (iv) joining of the large 60S ribosomal subunit and assembly of the 80S ribosome.Approximately a dozen eukaryotic translation initiation factors (eIFs) are needed for this process. A central component of the second and third step is eIF4F, a heterotrimeric stable complex consisting of the cap-binding protein eIF4E, the DEAD-box helicase eIF4A, and the central multiscaffold protein eIF4G, which possesses additional binding sites for the poly(A)-binding protein PABP and, in mammalia, for eIF3 (Fig. 1A). Mammalian eIF4G possesses a second eIF4A binding site in its C-terminal region in proximity to a binding site for protein kinase Mnk1 (mitogen-activated protein kinase-interacting kinase), which phosphorylates eIF4E. Crystal structures of the central and the C-terminal region of human eIF4GII reveal the formation of one or two HEAT domains, respectively (4, 5)Saccharomyces cerevisiae possesses two genes encoding for eIF4G, TIF4631 and TIF4632. The gene products, eIF4GI and eIF4GII, are 952 and 914 aa long and share Ϸ50% sequence identity. Deletion of one of these genes is tolerated by yeast cells, but double deletion of both genes causes lethality. Interaction of eIF4G with eIF4A is essential for the cell (6, 7). The 45-kDa initiation factor 4A (eIF4A) is a prototypical DEAD-box helicase (8). Its ATPase activity is RNA-dependent and its activity is substantially enhanced in ...