2021
DOI: 10.1101/2021.06.12.448096
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Scalability of large neural network simulations via activity tracking with time asynchrony and procedural connectivity

Abstract: We present here a new algorithm based on a random model for simulating efficiently large brain neuronal networks. Model parameters (mean firing rate, number of neurons, synaptic connection probability and postsynaptic duration) are easy to calibrate further on real data experiments. Based on time asynchrony assumption, both computational and memory complexities are proved to be theoretically linear with the number of neurons. These results are experimentally validated by sequential simulations of millions of n… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 66 publications
0
0
0
Order By: Relevance