The DEVS formalism has been recognized to support generic open architectures that allow incorporating multiple engineering domains within integrated simulation models. What is missing for accelerated adoption of DEVS-based methodology for intelligent cyberphysical system design is a set of building blocks and architectural patterns that can be replicated and reused in system development. As a start in this direction, this paper offers a notional architecture for intelligent hybrid cyberphysical system design and proceeds to focus on the decision layer to consider DEVS models for basic behaviors such as choice of alternatives, perception of temporal event relations, and recognition and generation of finite state languages cast into DEVS time segments. We proceed to describe a methodology to define DEVS-based building blocks and architectural patterns for design of systems employing fast, frugal, and accurate heuristics. We identify some elements of this kind and establish their status as minimal realizations of their defined behaviors. As minimal realizations such designs must ipso facto underlie any implementation of the same cognitive behaviors. We discuss architectures drawn from the cognitive science literature to show that the fundamental elements drawn from the fast, frugal, and accurate paradigm provide insights into intelligent hybrid cyberphysical system design. We close with open questions and research needed to confirm the proposed concepts.