Although numerous models describe the individual neural mechanisms that may be involved in the perception of visual motion, few of them have been constructed to take arbitrary stimuli and map them to a motion percept. Here, we propose an integrated dynamical motion model (IDM), which is sufficiently general to handle diverse moving stimuli, yet sufficiently precise to account for a wide-ranging set of empirical observations made on a family of random dot kinematograms. In particular, we constructed models of the cortical areas involved in motion detection, motion integration and perceptual decision. We analyzed their parameters through dynamical simulations and numerical continuation to constrain their proper ranges. Then, empirical data from a family of random dot kinematograms experiments with systematically varying direction distribution, presentation duration and stimulus size, were used to evaluate our model and estimate corresponding model parameters. The resulting model provides an excellent account of a demanding set of parametrically varied behavioral effects on motion perception, providing both quantitative and qualitative elements of evaluation.