Acoustic signal classification plays a central role in acoustic source identification. In practical applications, however, varieties of training data are typically inadequate, which leads to a low sample complexity. Applying classical deep learning methods to identify acoustic signals involves a large number of parameters in the classification model, which calls for great sample complexity. Therefore, low sample complexity modeling is one of the most important issues related to the performance of the acoustic signal classification. In this study, the authors propose a novel data fusion model named MFF-ResNet, in which manual design features and deep representation of log-Mel spectrogram features are fused with bi-level attention. The proposed approach involves an amount of prior human knowledge as implicit regularization, thus leading to an interpretable and low sample complexity model of the acoustic signal classification. The experimental results suggested that MFF-ResNet is capable of accurate acoustic signal classification with fewer training samples.