Energy disaggregation is the task of discerning the energy consumption of individual appliances from aggregated measurements, which holds promise for understanding and reducing energy usage. In this paper, we propose PHASED, an optimization approach for energy disaggregation that has two key features: PHASED (i) exploits the structure of power distribution systems to make use of readily available measurements that are neglected by existing methods, and (ii) poses the problem as a minimization of a difference of submodular functions. We leverage this form by applying a discrete optimization variant of the majorizationminimization algorithm to iteratively minimize a sequence of global upper bounds of the cost function to obtain high-quality approximate solutions. PHASED improves the disaggregation accuracy of state-of-the-art models by up to 61% and achieves better prediction on heavy load appliances.