2023
DOI: 10.1002/cpt.2826
|View full text |Cite
|
Sign up to set email alerts
|

Scalable Feature Engineering from Electronic Free Text Notes to Supplement Confounding Adjustment of Claims‐Based Pharmacoepidemiologic Studies

Abstract: Natural language processing (NLP) tools turn free-text notes (FTNs) from electronic health records (EHRs) into data features that can supplement confounding adjustment in pharmacoepidemiologic studies. However, current applications are difficult to scale. We used unsupervised NLP to generate high-dimensional feature spaces from FTNs to improve prediction of drug exposure and outcomes compared with claims-based analyses. We linked Medicare claims with EHR data to generate three cohort studies comparing differen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 45 publications
0
0
0
Order By: Relevance