2024
DOI: 10.1038/s41467-024-51900-x
|View full text |Cite
|
Sign up to set email alerts
|

Scalable interpolation of satellite altimetry data with probabilistic machine learning

William Gregory,
Ronald MacEachern,
So Takao
et al.

Abstract: We present GPSat; an open-source Python programming library for performing efficient interpolation of non-stationary satellite altimetry data, using scalable Gaussian process techniques. We use GPSat to generate complete maps of daily 50 km-gridded Arctic sea ice radar freeboard, and find that, relative to a previous interpolation scheme, GPSat offers a 504 × computational speedup, with less than 4 mm difference on the derived freeboards on average. We then demonstrate the scalability of GPSat through freeboar… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 47 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?