Although both the function and biocompatibility of protein-based biomaterials are better than those of synthetic materials, their usage as medical material is currently limited by their high costs, low yield, and low batch-to-batch reproducibility. In this article, we show how α-lactalbumin (α-LA), rich in tryptophan, was used to produce a novel type of naturally occurring, protein-based biomaterial suitable for wound dressing. To create a photo-cross-linkable polymer, α-LA was methacrylated at a 100-g batch scale with >95% conversion and 90% yield. α-LAMA was further processed using photo-cross-linking-based advanced processing techniques such as microfluidics and 3D printing to create injectable hydrogels, monodispersed microspheres, and patterned scaffolds. The obtained α-LAMA hydrogels show promising biocompatibility and degradability during in vivo testing. Additionally, the α-LAMA hydrogel can accelerate post-traumatic wound healing and promote new tissue regeneration. In conclusion, cheap and safe α-LAMA-based biomaterials could be produced, and they have a beneficial effect on wound healing. As a result, there may arise a potential partnership between the dairy industry and the development of pharmaceuticals.