In this paper, we study the performance of opportunistic scheduling in wireless networks from the perspective of information and entropy. In opportunistic scheduling, we allocate a limited number of channels to a certain number of nodes so as to maximize the network performance. Due to the inherent uncertainty of the system input represented by random variables with certain probability distributions, even under the optimal scheduling strategy, we may not achieve the best network performance. In our proposed model, we mathematically formulate the relationship between system uncertainty characterized by entropy and network performance, i.e., we give the lower and upper bounds of network performance with given entropy of the uncertain input. Based on this result, we can determine quantitatively the impact of system uncertainty on the performance of of opportunistic scheduling in wireless networks.