Abstract. In many applications NP-complete problems need to be solved exactly. One promising method to treat some intractable problems is by considering the so-called Parameterized Complexity that divides the problem input into a main part and a parameter. The main part of the input contributes polynomially on the total complexity of the problem, while the parameter is responsible for the combinatorial explosion. We consider the parallel FPT algorithm of Cheetham et al. to solve the k-Vertex Cover problem, using the CGM model. Our contribution is to present a refined and improved implementation. In our parallel experiments, we obtained better results and obtained smaller cover sizes for some input data. The key idea for these results was the choice of good data structures and use of the backtracking technique. We used 5 graphs that represent conflict graphs of amino acids, the same graphs used also by Cheetham et al. in their experiments. For two of these graphs, the times we obtained were approximately 115 times better, for one of them 16 times better, and, for the remaining graphs, the obtained times were slightly better. We must also emphasize that we used a computational environment that is inferior than that used in the experiments of Cheetham et al.. Furthermore, for three graphs, we obtained smaller sizes for the cover.