In order to remain competitive, Internet companies collect and analyse user data for the purpose of the improvement of user experiences. Frequency estimation is a widely used statistical tool, which could potentially conflict with the relevant privacy regulations. Privacy preserving analytic methods based on differential privacy have been proposed, which require either a large user base or a trusted server. Although the requirements for such solutions may not be a problem for larger companies, they may be unattainable for smaller organizations. To address this issue, we propose a distributed privacy-preserving sampling-based frequency estimation method which has high accuracy even in the scenario with a small number of users while not requiring any trusted server. This is achieved by combining multi-party computation and sampling techniques. We also provide a relation between its privacy guarantee, output accuracy, and the number of participants. Distinct from most existing methods, our methods achieve centralized differential privacy guarantee without the need of any trusted server. We established that, even for a small number of participants, our mechanisms can produce estimates with high accuracy and hence they provide smaller companies with more opportunity for growth through privacy-preserving statistical analysis. We further propose an architectural model to support weighted aggregation in order to achieve a higher accuracy estimate to cater for users with varying privacy requirements. Compared to the unweighted aggregation, our method provides a more accurate estimate. Extensive experiments are conducted to show the effectiveness of the proposed methods.