We propose a novel enhancement mechanism of the curvature perturbations in the nonminimal derivative coupling inflation model with a coupling parameter related to the inflaton field. By considering a special form of the coupling parameter as a function of the inflaton, a period of ultraslow-roll inflation can be realized due to the gravitationally enhanced friction, and the resulting power spectrum of the curvature perturbations has a sharp peak, which is large enough to produce the primordial black holes. Under this mechanism, we can easily obtain a sharp mass spectrum of primordial black holes around specific masses such as O(10)M , O(10 −5 )M , and O(10 −12 )M , which can explain the LIGO events, the ultrashort-timescale microlensing events in OGLE data, and the most of dark matter, respectively.