2018 3rd Russian-Pacific Conference on Computer Technology and Applications (RPC) 2018
DOI: 10.1109/rpc.2018.8482216
|View full text |Cite
|
Sign up to set email alerts
|

Scale of Binary Variables for Predicting Cardiovascular Risk Scale for Predicting Cardiovascular Risk

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 10 publications
0
1
0
1
Order By: Relevance
“…Also it was shown that the transformation of regression model development cardiovascular diseases difficult for apply in practical medicine into a more simplified version of scale was shown. This included the determination of disease predictors; categorization and inclusion in the regression model with optimal scaling and coefficients for subsequent calculation of importance; plotting regression dependence of theoretical probability investigated variable; selection of threshold value [36,37].…”
Section: Telemedicine Diagnosismentioning
confidence: 99%
“…Also it was shown that the transformation of regression model development cardiovascular diseases difficult for apply in practical medicine into a more simplified version of scale was shown. This included the determination of disease predictors; categorization and inclusion in the regression model with optimal scaling and coefficients for subsequent calculation of importance; plotting regression dependence of theoretical probability investigated variable; selection of threshold value [36,37].…”
Section: Telemedicine Diagnosismentioning
confidence: 99%
“…Известно небольшое количество исследований, где были изучены потенциальные преимущества использования подходов МО для прогнозирования риска ССЗ. Продемонстрировано, что, по сравнению с приведенными выше шкалами оценки, МО значительно повышает точность прогнозирования риска ССЗ, увеличивая количество пациентов, которые могли бы получить пользу в большей степени от профилактического лечения до проявления клинически значимых признаков [2][3][4]. В настоящей работе приведена потенциальная ценность использования подходов МО для построения модели прогнозирования риска ССЗ с учетом показателей артериального давления (АД).…”
unclassified