Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This work, carried out within the framework of the BlackCycle project, demonstrates the robustness of an auger reactor for the pyrolysis of end-of-life tires (ELTs) to be considered within the seventh level of technology readiness (TRL-7). For this purpose, the resulting pyrolysis products are compared with those obtained from a pilot scale facility ranging within the fifth technology readiness level (TRL-5). Using the same type of ELTs, tire trucks (TTs), operating conditions used at the TRL-5 plant are attempted to mimic those expected at a semi-industrial plant: tailored temperature profile (450, 550, and 775 °C) and residence time for vapors (30 s) and solids (15 min). The feed mass rate is 4 and 400 kg/h for the pilot and semi-industrial plants, respectively. The yields of tire pyrolysis oil (TPO), tire pyrolysis gas (TPG), and raw recovered carbon black (RRCB) from both plants, as well as their key properties and characteristics, are in good agreement with each other. The TPO produced by both plants contains comparable concentrations of value-added chemicals such as benzene, toluene, xylene, ethylbenzene, and limonene. There is also a very similar pattern between the simulated distillation curves. The TPG obtained from both plants is also very rich in H 2 and CH 4 and has a lower calorific value of 52−54 MJ/Nm 3 (N 2 free basis). Although the RRCBs produced by the two plants are more demanding and require more labor, they do have a number of comparable characteristics. All this information demonstrates not only the reliability of the experimental campaigns to scale up the pyrolysis process but also the robustness of the semi-industrial scale plant based on the auger technology to be classified at TRL-7.
This work, carried out within the framework of the BlackCycle project, demonstrates the robustness of an auger reactor for the pyrolysis of end-of-life tires (ELTs) to be considered within the seventh level of technology readiness (TRL-7). For this purpose, the resulting pyrolysis products are compared with those obtained from a pilot scale facility ranging within the fifth technology readiness level (TRL-5). Using the same type of ELTs, tire trucks (TTs), operating conditions used at the TRL-5 plant are attempted to mimic those expected at a semi-industrial plant: tailored temperature profile (450, 550, and 775 °C) and residence time for vapors (30 s) and solids (15 min). The feed mass rate is 4 and 400 kg/h for the pilot and semi-industrial plants, respectively. The yields of tire pyrolysis oil (TPO), tire pyrolysis gas (TPG), and raw recovered carbon black (RRCB) from both plants, as well as their key properties and characteristics, are in good agreement with each other. The TPO produced by both plants contains comparable concentrations of value-added chemicals such as benzene, toluene, xylene, ethylbenzene, and limonene. There is also a very similar pattern between the simulated distillation curves. The TPG obtained from both plants is also very rich in H 2 and CH 4 and has a lower calorific value of 52−54 MJ/Nm 3 (N 2 free basis). Although the RRCBs produced by the two plants are more demanding and require more labor, they do have a number of comparable characteristics. All this information demonstrates not only the reliability of the experimental campaigns to scale up the pyrolysis process but also the robustness of the semi-industrial scale plant based on the auger technology to be classified at TRL-7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.