We discuss asymptotics for the boundary of critical Boltzmann planar maps under the assumption that the distribution of the degree of a typical face is in the domain of attraction of a stable distribution with parameter α ∈ (1, 2). First, in the dense phase corresponding to α ∈ (1, 3/2), we prove that the scaling limit of the boundary is the random stable looptree with parameter 1/(α − 1/2). Second, we show the existence of a phase transition through local limits of the boundary: in the dense phase, the boundary is tree-like, while in the dilute phase corresponding to α ∈ (3/2, 2), it has a component homeomorphic to the half-plane. As an application, we identify the limits of loops conditioned to be large in the rigid O(n) loop model on quadrangulations, proving thereby a conjecture of Curien & Kortchemski.