The most widespread approach in dendrochronology (wood dating) and dendroclimatology (climate reconstruction) is based on measurement of the width of annual growth rings by analyzing optical images of wood cross sections. This approach is quite efficient and easy to implement but it has inherent drawbacks. Raw data for these techniques originate from the optical properties of the wood surface, which are not directly related to other properties of wood, mechanical properties in particular. This paper describes a new quantitative approach applicable to dendrochronology and dendroclimatology based upon measurement of the micromechanical properties of wood by employing nanoindendation and digital sclerometry. It yields not only the width of annual growth rings and early and late wood layers with an accuracy not inferior to optical methods, but also rich data on the mechanical properties of the wood with a high spatial resolution that could be brought to subcellular scale if necessary. This data can be used for the dendrochronological analysis of archeological finds and the evaluation of climatic parameters during tree growth with a time resolution of up to a month or even better, which is unlike other common methods with a time resolution of one year. Moreover, the detailed continuous profiling of local mechanical properties can form a basis for improving our understanding of the nature and mechanisms of the formation of macromechanical properties important for applications and can clarify the climate factors that have the greatest impact on such properties.