Abstract. This paper showcases a quantitative investigation of scattering of ultrasonic waves experiences when impinging on a cylindrical defect inside a solid cylinder. Such cylindrical bores reduce the structural capacity of the cylinder, these defects constitute an even greater risk as they cannot be observed from the surface. The focal point investigated herein is to develop a better understanding of the wave’s scattering when interacting with defects of cylindrical bore, mimicking the Teredo marine borer, within the solid cylinder. Two-dimensional Finite Element simulations are carried out using ABAQUS software. A 200 kHz 5.5 cycle Hann windowed excitation on an isotropic cylinder is simulated a point source excitation at the circumference of the cylinder is used. The scattering wave fields from a range of defect diameters through the solid cylinder are presented. Using Two-Dimensional Fast Fourier Transform, the wave mode and velocity of the scattered wavefield along various directions was identified in cylindrical coordinates, to decouple the wave modes. Computational results are presented for the scattering pattern as a function of cylindrical bore diameter size relative to wavelength. This study serves as an efficient approach when choosing an input for ultrasonic imaging, with the aim to obtain high fidelity imaging resolution for structural health monitoring applications.