Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The climate targets set out in the "European Green Deal" call for the consideration and implementation of climate-friendly propulsion concepts and sustainable fuels in future aircraft configurations. This puts the use of very efficient propeller engines into the focus of aircraft design. However, these pose major challenges, especially to cabin acoustics, due to high, tonal sound pressure levels on the fuselage. The design of noise control measures requires the competence to predict the resulting interior noise as early as possible in the design process of the vehicle. This requires a high level of geometric and structural detail regarding the fuselage structure and cabin components. With increasing frequency range, the necessary structural details also increase, which have to be resolved in the simulation models due to the associated decreasing structural wavelength. Especially in the context of aircraft pre-design, there is usually not enough information available for a detailed vibro-acoustic modeling of the fuselage and cabin components, which allows a meaningful prediction of the vibrations and thus the cabin noise. Therefore, the knowledge-based tool FUGA (Fuselage Geometry Assembler) is developed for the targeted enrichment of preliminary design data with knowledge for detailed numerical analyses. This paper describes the knowledge-based geometry and model generation in FUGA, which can consider the necessary (increasing) level of detail for the vibro-acoustic prediction already in the preliminary design. For this purpose, aircraft data sets in the preliminary design data format CPACS (Common Parametric Aircraft Configuration Schema) form the modeling basis. Originating from the aircraft preliminary design, these initially describe the outer shell of the vehicle and are extended by detailed structural information that defines the geometric boundary conditions for component placement in cabin design. For the cabin components, the open-source geometry kernel OCCT (Open Cascade Technology) is used to provide geometries at the level of detail required for subsequent analyses. The geometry models are then discretized in open source (e.g. Gmsh) or commercial meshers and further used for numerical analysis. Finally, the prediction of cabin noise is demonstrated as a Proof of Concept using the example of a short-haul propeller-driven aircraft and the sensitivity of resulting simulation models to the fuselage skin thickness is investigated.
The climate targets set out in the "European Green Deal" call for the consideration and implementation of climate-friendly propulsion concepts and sustainable fuels in future aircraft configurations. This puts the use of very efficient propeller engines into the focus of aircraft design. However, these pose major challenges, especially to cabin acoustics, due to high, tonal sound pressure levels on the fuselage. The design of noise control measures requires the competence to predict the resulting interior noise as early as possible in the design process of the vehicle. This requires a high level of geometric and structural detail regarding the fuselage structure and cabin components. With increasing frequency range, the necessary structural details also increase, which have to be resolved in the simulation models due to the associated decreasing structural wavelength. Especially in the context of aircraft pre-design, there is usually not enough information available for a detailed vibro-acoustic modeling of the fuselage and cabin components, which allows a meaningful prediction of the vibrations and thus the cabin noise. Therefore, the knowledge-based tool FUGA (Fuselage Geometry Assembler) is developed for the targeted enrichment of preliminary design data with knowledge for detailed numerical analyses. This paper describes the knowledge-based geometry and model generation in FUGA, which can consider the necessary (increasing) level of detail for the vibro-acoustic prediction already in the preliminary design. For this purpose, aircraft data sets in the preliminary design data format CPACS (Common Parametric Aircraft Configuration Schema) form the modeling basis. Originating from the aircraft preliminary design, these initially describe the outer shell of the vehicle and are extended by detailed structural information that defines the geometric boundary conditions for component placement in cabin design. For the cabin components, the open-source geometry kernel OCCT (Open Cascade Technology) is used to provide geometries at the level of detail required for subsequent analyses. The geometry models are then discretized in open source (e.g. Gmsh) or commercial meshers and further used for numerical analysis. Finally, the prediction of cabin noise is demonstrated as a Proof of Concept using the example of a short-haul propeller-driven aircraft and the sensitivity of resulting simulation models to the fuselage skin thickness is investigated.
The climate targets set out in the “European Green Deal” call for the consideration and implementation of climate-friendly propulsion concepts and sustainable fuels in future aircraft configurations. This puts the use of very efficient propeller engines into the focus of aircraft design. However, these pose major challenges, especially to cabin acoustics, due to high, tonal sound pressure levels on the fuselage. The design of noise control measures requires the competence to predict the resulting interior noise as early as possible in the design process of the vehicle. This requires a high level of geometric and structural detail regarding the fuselage structure and cabin components. With increasing frequency range, the necessary structural details also increase, which have to be resolved in the simulation models due to the associated decreasing structural wavelength. Especially in the context of aircraft pre-design, there is usually not enough information available for a detailed vibro-acoustic modeling of the fuselage and cabin components, which allows a meaningful prediction of the vibrations and thus the cabin noise. Therefore, the knowledge-based tool Fuselage Geometry Assembler (FUGA) is developed for the targeted enrichment of preliminary design data with knowledge for detailed numerical analyses. This paper describes the knowledge-based geometry and model generation in FUGA, which can consider the necessary (increasing) level of detail for the vibro-acoustic prediction already in the preliminary design. For this purpose, aircraft data sets in the preliminary design data format Common Parametric Aircraft Configuration Schema (CPACS) form the modeling basis. Originating from the aircraft preliminary design, these initially describe the outer shell of the vehicle and are extended by detailed structural information that defines the geometric boundary conditions for component placement in cabin design. For the cabin components, the open-source geometry kernel Open Cascade Technology (OCCT) is used to provide geometries at the level of detail required for subsequent analyses. The geometry models are then discretized in open source (e.g. Gmsh) or commercial meshers and further used for numerical analysis. Finally, the prediction of cabin noise is demonstrated as a Proof of Concept using the example of a short-haul propeller-driven aircraft and the feasibility of the proposed method is indicated by investigating the sensitivity of resulting simulation models to the fuselage skin thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.