Scheduled Curiosity-Deep Dyna-Q: Efficient Exploration for Dialog Policy Learning
Xuecheng Niu,
Akinori Ito,
Takashi Nose
Abstract:Training task-oriented dialog agents based on reinforcement learning is time-consuming and requires a large number of interactions with real users. How to grasp dialog policy within limited dialog experiences remains an obstacle that makes the agent training process less efficient. In addition, most previous frameworks start training by randomly choosing training samples, which differs from the human learning method and hurts the efficiency and stability of training. Therefore, we propose Scheduled Curiosity-D… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.