The problem of scheduling N jobs on M uniform parallel machines is studied. The objective is to minimize the mean tardiness or the weighted sum of tardiness with weights based on jobs, on periods or both. For the mean tardiness criteria in the preemptive case, this problem is NP-hard but good solutions can be calculated with a transportation problem algorithm. In the nonpreemptive case the problem is therefore NP-hard, except for the cases with equal job processing times or with job due dates equal to job processing times. No dominant heuristic is known in the general nonpreemptive case. The author has developed a heuristic to solve the nonpreemptive scheduling problem with unrelated job processing times. Initially, the algorithm calculates a basic solution. Next, it considers the interchanges of job subsets to equal processing time sum interchanging resources (i.e. a machine for a given period). This paper models the scheduling problem. It presents the heuristic and its result quality, solving 576 problems for 18 problem sizes. An application of school timetable scheduling illustrates the use of this heuristic.