Smart homes play a crucial role in reducing the residential sector electricity consumption and Greenhouse Gases (GHG) emissions. In this work, we present a time series approach to predict GHG emissions to be integrated into smart home management systems. More specifically, we used Long Short-Term Memory (LSTM), a variant of Recurrent Neural Networks. The prediction results get mean absolute percentage error (MAPE) close to 2 % when the region under study has an energy matrix mostly based on fossil fuels, less intermittent. For regions in which more renewable sources are present, the MAPE is around 12 %. However, in either case, LSTM can predict the hours well with smaller emissions among the next 24 hours. Such day-ahead information brings awareness to the users and allows the scheduling of appliances to work in the hours in which the emissions are minimal, reducing them without significantly affecting the consumers' behavior.