We consider the parallel-machine scheduling problem in which the machines have availability constraints and the processing time of each job is simple linear increasing function of its starting times. For the makespan minimization problem, which is NP-hard in the strong sense, we discuss the Longest Deteriorating Rate algorithm and List Scheduling algorithm; we also provide a lower bound of any optimal schedule. For the total completion time minimization problem, we analyze the strong NP-hardness, and we present a dynamic programming algorithm and a fully polynomial time approximation scheme for the two-machine problem. Furthermore, we extended the dynamic programming algorithm to the total weighted completion time minimization problem.