1975
DOI: 10.1002/pssa.2210300204
|View full text |Cite
|
Sign up to set email alerts
|

Schottky effect in the Pr3Te4Pr2Te3 system

Abstract: The heat capacity of RTez (R = Pr, La; z = 1.33, 1.37, 1.47, and 1.50) has been measured in a vacuum adiabatic calorimeter over the temperature range 5 to 273 °K. The heat capacity contribution due to the Schottky effect has been determined. The energy level set (ϵi) of the 3H4 state of the Pr3+ ion split by the crystal field with Th3P4 symmetry is calculated using the method of Stevens equivalent operators in the point charge model. For Pr3Te4 ϵi = 0,27.5, 88.2 (a doublet), 113.5, 331.7, 338.3 (a doublet), 34… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

1
4
0
4

Year Published

1980
1980
2020
2020

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 36 publications
(9 citation statements)
references
References 10 publications
1
4
0
4
Order By: Relevance
“…In the case of doping with rare-earth elements, a three-level system can emerge due to a distortion of the lattice parameters caused by the polar displacements of bismuth and iron ions from the initial positions, and a change in the bond angle between oxygen octahedra FeO 6 [11]. In the general case, the expression for the Schottky heat capacity can be obtained by differentiation of the particle mean energy at the energy levels C p ¼(kT 2 ) À1 (hE i 2 i -hE i i 2 ) [12]. In the case of the three-level model (at arbitrary material mass), the Schottky heat capacity is given as…”
Section: Resultsmentioning
confidence: 99%
“…In the case of doping with rare-earth elements, a three-level system can emerge due to a distortion of the lattice parameters caused by the polar displacements of bismuth and iron ions from the initial positions, and a change in the bond angle between oxygen octahedra FeO 6 [11]. In the general case, the expression for the Schottky heat capacity can be obtained by differentiation of the particle mean energy at the energy levels C p ¼(kT 2 ) À1 (hE i 2 i -hE i i 2 ) [12]. In the case of the three-level model (at arbitrary material mass), the Schottky heat capacity is given as…”
Section: Resultsmentioning
confidence: 99%
“…В общем случае выражение для теплоемкости Шоттки можно получить, дифференцируя среднюю энергию частиц на энергетических уровнях: [12]. Для трехуровневой системы эта формула принимает вид [13]: FeO 3 , на зависимости ε ′ (T ), так же как и на зависимости C p (T ), наблюдается вторая аномалия (∼ 583 K).…”
Section: результаты и обсужденияunclassified
“…В общем случае выражение для теплоемкости Шотт-ки можно получить, дифференцируя среднюю энер-гию частиц на энергетических уровнях C p = (kT 2 ) [11]. Выражение для теплоемкости Шоттки в случае трехуровневой модели (при произволь-ной массе вещества) имеет вид [12] …”
Section: результаты и обсуждениеunclassified