2022
DOI: 10.1007/s00029-022-00793-z
|View full text |Cite
|
Sign up to set email alerts
|

Schottky spaces and universal Mumford curves over $${\mathbb {Z}}$$

Abstract: For every integer g ≥ 1 we define a universal Mumford curve of genus g in the framework of Berkovich spaces over Z. This is achieved in two steps: first, we build an analytic space Sg that parametrizes marked Schottky groups over all valued fields. We show that Sg is an open, connected analytic space over Z. Then, we prove that the Schottky uniformization of a given curve behaves well with respect to the topology of Sg, both locally and globally. As a result, we can define the universal Mumford curve Cg as a r… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?