2014
DOI: 10.1007/s11401-014-0860-x
|View full text |Cite
|
Sign up to set email alerts
|

Schur convexity for two classes of symmetric functions and their applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
2

Year Published

2014
2014
2014
2014

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 21 publications
0
0
0
2
Order By: Relevance
“…) [7] 中的主要结果) 的推广, 这里给出了它一个新 的证明, 因此, 我们用一新方法推广且解决了 Guan [6] 提出的公开问题, 这是本文的第一个目的. 另外, 推论 3.2 和 3.4 是文献 [14] 的主要结果, 且推论 3.2 是 Xia 和 Chu [15] 所得的 K n (x, r) 在 (0, 1] n 上 Schur 凸性的推广, 而推论 3.3 是 Xia 等人 [13]…”
Section: 定义与引理unclassified
See 1 more Smart Citation
“…) [7] 中的主要结果) 的推广, 这里给出了它一个新 的证明, 因此, 我们用一新方法推广且解决了 Guan [6] 提出的公开问题, 这是本文的第一个目的. 另外, 推论 3.2 和 3.4 是文献 [14] 的主要结果, 且推论 3.2 是 Xia 和 Chu [15] 所得的 K n (x, r) 在 (0, 1] n 上 Schur 凸性的推广, 而推论 3.3 是 Xia 等人 [13]…”
Section: 定义与引理unclassified
“…G n (x, r) 的 Schur 凸性、Schur 乘性凸性和 Schur 调和凸性. 作为应用, 用 Schur 凸函数自变量的双射 变换导出其他几类对称函数的 Schur 凸性, 其中包含文献 [13][14][15] 的主要结果; 用控制理论建立一些不 等式. 特别地, 由此给出 Sharpiro 不等式和 Ky Fan 不等式一个共同的推广, 导出 Safta 猜想 [16,17] 在 高维空间的推广.…”
unclassified