The bodies of platform staff workers in high-speed railway stations absorb induction electric field when being exposed to the electric field environment of contact wires with 25 kV high-voltages. To analyze the safety of electromagnetic exposure of the station platform staff workers with different numbers of tracks, this paper establishes a model with 6 tracks, 2 platforms, and 4 staff workers on the platform simulating the actual situation. It then analyzes the distribution of induction electric field present in their human body tissues, which in the electric field environment is generated by the high voltages of the contact wires of 1 track, 3 tracks, 6 tracks, respectively. Calculation results show that the maximum induction electric field of staff worker on the platform with different track numbers appears at the scalp, and the electric field intensity levels in the skull and brain are relatively small. For example, on the two platforms with 6 tracks, the maximum induction electric field of the staff worker is found in the scalp, and the values are 58.86 times and 1688.52 times of those of the skull and brain, respectively. For the staff worker at the safety white line, the maximum induction electric field in a human central nervous system is 0.61 mV/m, which is far less than the basic limit of 100 mV/m occupational exposure in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. With the increase in the number of tracks, the maximum induction electric field of the staff also increases correspondingly at the same position. Research results can provide data reference for the formulation of electromagnetic protection and standards for high-speed railway platform staff workers.