Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Since the COVID-19 pandemic, there has been persistent emphasis on the importance of indoor air disinfection and ventilation in isolation units in the hospital environment. Nevertheless, no optimal and concrete disinfection protocol has been proposed to inactivate the viruses as quickly as possible. In this study, we experimentally evaluated various ventilation and disinfection protocols based on the combination of negative-pressure ventilation, ultraviolet (UV) light illumination, and Hypochlorous acid (HOCl) spray against three active virus species in a 3.5 cubic meters isolation unit. This small-size unit has gained attention during the pandemic due to the high demand for compact mobile laboratory systems capable of rapid disease diagnosis. In accordance with the WHO laboratory biosafety guidance, which states that all enclosed units where diagnostic work is conducted must ensure proper ventilation and disinfection activities, we aim to propose virus removal protocols for units compact enough to be installed within a van or deployed outdoor. The results confirmed the superiority (in terms of virus removal rate and time required) of the virus removal methods in the order of UV light, ventilation, and HOCl spray. Ultimately, we propose two optimal protocols: (i) UV light alone for three minutes, and (ii) UV light with ventilation for three minutes, followed by one-minute ventilation only. The time span of three minutes in the latter protocol is based on the clinical practice such that the medical staffs have a sufficient time to process the samples taken in transition to next patient to care.
Since the COVID-19 pandemic, there has been persistent emphasis on the importance of indoor air disinfection and ventilation in isolation units in the hospital environment. Nevertheless, no optimal and concrete disinfection protocol has been proposed to inactivate the viruses as quickly as possible. In this study, we experimentally evaluated various ventilation and disinfection protocols based on the combination of negative-pressure ventilation, ultraviolet (UV) light illumination, and Hypochlorous acid (HOCl) spray against three active virus species in a 3.5 cubic meters isolation unit. This small-size unit has gained attention during the pandemic due to the high demand for compact mobile laboratory systems capable of rapid disease diagnosis. In accordance with the WHO laboratory biosafety guidance, which states that all enclosed units where diagnostic work is conducted must ensure proper ventilation and disinfection activities, we aim to propose virus removal protocols for units compact enough to be installed within a van or deployed outdoor. The results confirmed the superiority (in terms of virus removal rate and time required) of the virus removal methods in the order of UV light, ventilation, and HOCl spray. Ultimately, we propose two optimal protocols: (i) UV light alone for three minutes, and (ii) UV light with ventilation for three minutes, followed by one-minute ventilation only. The time span of three minutes in the latter protocol is based on the clinical practice such that the medical staffs have a sufficient time to process the samples taken in transition to next patient to care.
Background: Bioaerosols can represent a danger to health. During SARS-CoV-2 pandemic, portable devices were used in different environments and considered a valuable prevention tool. This study has evaluated the effectiveness of the air treatment device “AEROK 1.0®” in reducing microbial, particulate, and pollen airborne contamination indoors, during normal activity. Methods: In an administrative room, airborne microbial contamination was measured using active (DUOSAS 360 and MD8) and passive sampling; a particle counter was used to evaluate particle concentrations; a Hirst-type pollen trap was used to assess airborne pollen and Alternaria spores. Statistical analysis was performed using SPSS 26.0; p values < 0.05 were considered statistically significant. Results: The airborne bacterial contamination assessed by the two different samplers decreased by 56% and 69%, respectively. The airborne bacterial contamination assessed by passive sampling decreased by 44%. For fungi, the reduction was 39% by active sampling. Airborne particles (diameters ≥ 1.0, 2.0 μm) and the ratio of indoor/outdoor concentrations of total pollen and Alternaria spp. spores significantly decreased. Conclusions: The results highlight the effectiveness of AEROK 1.0® in reducing airborne contamination. The approach carried out represents a contribution to the definition of a standardized model for evaluating the effectiveness of devices to be used for air disinfection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.