The rapid movement of phospholipids (PL) between plasma membrane leaflets in response to increased intracellular Ca 2؉ is thought to play a key role in expression of platelet procoagulant activity and in clearance of injured or apoptotic cells. We recently reported isolation of a ϳ37-kDa protein in erythrocyte membrane that mediates Ca 2؉ -dependent movement of PL between membrane leaflets, similar to that observed upon elevation of Ca 2؉ in the cytosol (Bassé , F., Stout, J. G., Sims, P. J., and Wiedmer, T. (1996) J. Biol. Chem. 271, 17205-17210). Based on internal peptide sequence obtained from this protein, a 1,445-base pair cDNA was cloned from a K-562 cDNA library. The deduced ''PL scramblase'' protein is a proline-rich, type II plasma membrane protein with a single transmembrane segment near the C terminus. Antibody against the deduced Cterminal peptide was found to precipitate the ϳ37-kDa red blood cell protein and absorb PL scramblase activity, confirming the identity of the cloned cDNA to erythrocyte PL scramblase. Ca 2؉ -dependent PL scramblase activity was also demonstrated in recombinant protein expressed from plasmid containing the cDNA. Quantitative immunoblotting revealed an approximately 10-fold higher abundance of PL scramblase in platelet (ϳ10 4 molecules/cell) than in erythrocyte (ϳ10 3 molecules/ cell), consistent with apparent increased PL scramblase activity of the platelet plasma membrane. PL scramblase mRNA was found in a variety of hematologic and nonhematologic cells and tissues, suggesting that this protein functions in all cells.