Time and temperature affect the viscoelasticity of woven composites, and thus affect their long-term mechanical properties. We develop a multiscale method considering fiber twist angle and interfaces to predict viscoelasticity. The multiscale approach is based on homogenization theory and the time–temperature superposition principle (TTSP). It is carried out in two steps. Firstly, the effective viscoelasticity properties of yarn are calculated using microscale homogenization; yarn comprises elastic fibers, interface, and a viscoelastic matrix. Subsequently, the effective viscoelasticity properties of woven composites are computed by mesoscale homogenization; it consists of homogenized viscoelastic yarns and matrix. Moreover, the multiscale method is verified using the Mechanics of Structure genome (MSG) consequence. Finally, the effect of temperature, fiber twist angle, fiber array, and coating on either the yarn’s effective relaxation stiffness or the relaxation moduli of the woven composite is investigated. The results show that increased temperature shortens the relaxation time of viscoelastic woven composites, and fiber twist angle affects tensors in the relaxation stiffness matrix of the yarn; the coating affects the overall mechanical properties of woven composites as well.