During early palate development, gene expression and regulation exhibit heterogeneity along the anterior-posterior axis. Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways play essential roles in secondary palatal formation but the exact relationship between the TGF-β and BMP pathways in palate development remains unknown. Here, we demonstrate that, during early secondary palate development, phospho-(p)Smad1/5/8 is highly expressed in the anterior palate but relatively lowly expressed in the posterior palate. Conversely, pSmad2/3 has a lower expression level in the anterior palate than in the posterior palate. With the BRE-Gal reporter, we found that the canonical BMP signaling pathway was not activated in the anterior palate but exhibited a moderate level in the posterior palate. Co-immunoprecipitation revealed that Smad4 bound to pSmad1/5/8 only in the posterior palate and not in the anterior palate. Knocking-out of Tgfbr2 (Wnt1-Cre;Tgfbr2 ;BRE) in the palatal mesenchyme enhanced canonical BMP activity in the posterior palate but not in the anterior palate, because of decreased pSmad2/3. pSmad1/5/8-Smad4 complexes were found to be dramatically increased in posterior palatal mesenchymal cells at embryonic day 13.5 cultured in the presence of SB525334. Proximity ligation assay also showed pSmad1/5/8-Smad4 complexes were increased in the posterior palate of Wnt1-Cre;Tgfbr2 mice. Therefore, the reduction of pSmad2/3 level in the palatal mesenchyme of Wnt1-Cre;Tgfbr2 ;BRE mice contributes primarily to the increase of pSmad1/5/8-Smad4 complexes leading to enhanced canonical BMP activity in the posterior palate. Moreover, during early development, canonical BMP signaling operates in the posterior palate but is completely absent in the anterior palate. Canonical TGF-β signaling suppresses canonical BMP signaling activity in the posterior palate by competing limited Smad4.