Monolithic low-temperature co-fired ceramic (LTCC) SiP modules have been presented for microwave applications. In order to integrate almost passive circuits of a radio system into the LTCC substrate, key technologies such as suppressing parasitic resonant modes, low-loss transitions and compact passive devices have been investigated. Well analyzed mechanisms on the parasitic resonant modes and their suppressing methods have been applied to high-isolation SiP structures. A strip line (SL) to CPW vertical transition using a stepped via structure embedding air cavities has been devised and has been used to design a SL BPF. A surface mount technology (SMT) pad transition has been developed by utilizing a modified coaxial line. A LPF composed of vertical plate capacitors and helical inductors and a 2 × 2 array antenna have been developed. A 61 GHz heterodyne transmitter LTCC SiP module has been implemented by monolithically embedding all passive circuits such as a SL BPF, 2 × 2 array antenna, SMT pads and feeding lines into it. A 60 GHz amplitude shift-keying (ASK) transceiver LTCC SiP module has been implemented as small as 17.8 × 17.9 × 0.6 mm 3 by integrating a high-isolation via fence and a LPF. They have been characterized in terms of an output power, spectrum and link test.